
Chapter 4: Configuring the High-Level Network
4-20
To configure a monitor for a UC Davis SNMP agent, using default CPU,
memory threshold, and disk use values and specifying non-default memory
coefficient and user values, use the bigpipe monitor command, as in the
following example.
b monitor my_snmp_dca ’{ use snmp_dca mem_coefficient "1.5"/
USEROID ".1.3.6.1.4" USEROID_COEFFICIENT "1.5" USEROID_THRESHOLD/
"80" }’
To configure a monitor for a UC Davis SNMP agent, omitting CPU,
memory, and disk use values and using default user coefficient and user
threshold values (1.0 and 90 respectively), use the bigpipe monitor
command, as in the following example.
b monitor my_snmp_dca ’{ use snmp_dca_base USEROID ".1.3.6.1.4"}’
To configure a monitor for a UC Davis SNMP agent, omitting CPU,
memory, and disk use values and specifying non-default user values, use the
bigpipe monitor command, as in the following example.
b monitor my_snmp_dca_base ’{ use snmp_dca_base USEROID/
".1.3.6.1.4" USEROID_COEFFICIENT/ "1.5" USEROID_THRESHOLD "80" )’
To configure a monitor for a Windows 2000 SNMP agent, using default
CPU, memory, and disk use values, use the bigpipe monitor command, as
in the following example.
b monitor my_win2000_snmp_dca ’{use snmp_dca agent_type "WIN2000"}’
To associate the health check monitor with the member
node
Use the following syntax to associate the custom health check monitor with
the server node and create an instance of the monitor for that node:
b node <node_addr> monitor use my_snmp_dca
To set the load balancing method to Dynamic Ratio
Use the following syntax to create or modify the load balancing pool to
which the server belongs to use Dynamic Ratio load balancing:
b pool <pool_name> { lb_method dynamic_ratio <member definition>... }
Priority-based member activation
You can load balance traffic across all members of a pool or across only
members that are currently activated according to their priority number. In
priority-based member activation, each member in a pool is assigned a
priority number that places it in a priority group designated by that number.
With all nodes available (meaning they are enabled, marked up, and have
not exceeded their connection limit), the BIG-IP distributes connections to
all nodes in the highest priority group only, that is, the group designated by
the highest priority number. The min_active_members value determines
the minimum number of members that must remain available for traffic to
Kommentare zu diesen Handbüchern